
Proceedings of the Royal Society of Edinburgh, 120A, 245-265, 1992

Periodic homogenisation of certain fully nonlinear partial
differential equations

Lawrence C. Evans*
Department of Mathematics, University of California, Berkeley, CA 94720,

U.S.A.

(MS received 9 January 1990 Revised MS received 24 April 1991)

Synopsis
We demonstrate how a fairly simple "perturbed test function" method establishes periodic
homogenisation for certain Hamilton-Jacobi and fully nonlinear elliptic partial differential equations.
The idea, following Lions, Papanicolaou and Varadhan, is to introduce (possibly nonsmooth)
correctors, and to modify appropriately the theory of viscosity solutions, so as to eliminate then the
effects of high-frequency oscillations in the coefficients.

1. Introduction

We investigate in this paper periodic homogenisation for certain fully nonlinear,
first and second order partial differential equations (PDE). Our basic problem is
this: given the PDE

F^D2ue,Due, ue,x,-^) = 0, (1.1),

where the nonlinearity F is periodic in its last argument, we hope to show that the
solutions ue converge somehow as e goes to zero to a solution u of an effective
limiting PDE, having the form

F(D2u, Du, u, x) = 0. (1.2)

The primary difficulties are both to discover the precise structure of F and also to
justify rigorously the convergence.

We shall narrow our focus to those PDE verifying, formally at least, a
maximum principle, so that we may invoke the theory of the weak or so-called
viscosity solutions. This approach interprets a solution of ( l . l ) e or (1.2) in terms
of its pointwise behaviour with respect to a smooth test function $ (see
[7,6,16,13,10], etc.).

Such a formulation turns out to be extremely useful for homogenisation
questions, where both the bad nonlinearity and the rapid periodic oscillations
preclude any very good uniform estimates on {we}e>o. Indeed, if we employ the
standard methods of asymptotic expansions to seek a representation

ME = U + £«, + £2W2+. . . , (1.3)

* Supported in part by NSF grants DMS-86-01532 and DMS-86-10730 (at the Institute for Advanced
Study, Princeton, NJ).

available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0308210500032121
Downloaded from https:/www.cambridge.org/core. Carnegie Mellon University, on 11 Jan 2017 at 21:14:53, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0308210500032121
https:/www.cambridge.org/core


246 Lawrence C. Evans

we find formally that both the limit u and the correctors «,, u2, • • • must
necessarily satisfy various bad nonlinear PDE, which in general do not have
smooth solutions. On the other hand, the earlier paper [9] proposed replacing
(1.3) with a corresponding expansion

0 e = 0 + £0, + £202 + . . . , (1.4)

the smooth test function (f> being given. The general hope is that since <p 1S

regular, the appropriate correctors <plt <f)2, • • • will be smooth as well. This turns
out to be the case for the various quasilinear PDE analysed in [9]. For the
situation at hand, however, the full nonlinearity forces <£,, 02> • • • and thus <pe to
be nonsmooth, and consequently the techniques of [9] are not applicable. But we
demonstrate instead here that nevertheless we can modify viscosity solution
techniques to handle convergence in various situations, in spite of the non-
smoothness of our perturbed test functions <pE. In this endeavour, we shall
employ a number of ideas from the unpublished paper of Lions, Papanicolaou
and Varadhan [15] (which predates [9]).

In Section 2 we discuss the general theory of homogenisation of certain first
order fully nonlinear PDE and in Section 3, second order fully nonlinear elliptic
equations. Section 4 investigates the passage from second order to first order
PDE, in the presence of rapid oscillation. Finally, Section 5 provides several
simple examples for which more-or-less explicit formulae can be had for the
effective limiting PDE.

For more information concerning homogenisation of linear and quasilinear
PDE, consult [17, 2, 3] and the references therein.

I am very grateful to P.-L. Lions for many useful suggestions, and especially for
providing me with a copy of the unpublished paper [15], several key results of
which I reproduce below for the reader's convenience.

2. First-order equations

To illustrate most clearly the basic techniques, let us consider first the model
problem

r

H(Due,ue,x,-)=0 in Q,

( 2 1 )

where Q denotes a bounded smooth open subset of Un, and

H:WxU x Q x R " ^ R

is a given smooth function. Our primary hypothesis is that

the mapping y>-^H{p, u, x, y) is Y-periodic (2.2)

for all p, u, x, where Y= [0, 1]", the unit cube in U". We additionally require

lim H(p, u, x, y) = +°°, uniformly on 5(0, L) x Q x U" for each L>0, (2.3)
lpl-.sc

u>-*H(p, u, x, y) — fiu is nondecreasing (2.4)
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Periodic homogenisation of partial differential equations 247

for some pi > 0 and all p, x, y, and

j H is Lipschitz continuous on

lB(0, L) x .6(0, L)xQxUn for each L > 0 . ^ ' ^

Suppose finally for each £>0 , ueeC(Q) is a viscosity solution of (2.1)e. In
view of hypotheses (2.3), (2.4) and standard theory for viscosity solutions,

sup I K H C ^ Q ^ 0 0 ; (2.6)
()<E<1

and thus we may extract a subsequence {ue'}J=l c {M£}E>0 and a function
weC01(Q) so that

ue>—>u uniformly on Q as £,--»• 0. (2.7)

We propose to find a nonlinear first order PDE which u solves in the viscosity
sense. The key insight is due to Lions, Papanicolaou and Varadhan [15]:

LEMMA 2.1. For each fixed p e IR", u e IR and x eQ, there exists a unique real
number A for which the PDE

(H(Dyv+p,u,x,y) = k inW

\v Y-periodic

has a viscosity solution v e C0>1(IR").

Proof ([15]). 1. Given p e IR", u e IR and x e Ci, we consider for each 6 > 0 the
approximating PDE

dwd + H(Dyw
d+p, u, x,y) = 0 in IR".

Owing to the hypotheses on H, there exists a unique Lipschitz viscosity solution
w6 of (2.9)6, and in particular the uniqueness implies w6 to be y-periodic. We
have in addition the estimate

sup \\6w°\\L-m£\\H(p,u,x,-)\\L-m<cc; (2.10)
0<<5<l

and thus from (2.3)

(2.11)
U<O<1

Now set
6. (2.12)

Then v d is F-periodic for each 0 < 6 < 1 and

SUp ||t>6||c<U(y)<°°. (2.13)
0<6<l

Utilising (2.10), (2.13), we extract a subsequence {(v8', (5/w
<5')}°°=1 c

{(ua, <W*)}o<6<1 so that

-+v uniformly in IR", (2.14)
6'-> -A uniformly in IR",
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248 Lawrence C. Evans

for some function v e C0>1(IR"), v Y-periodic, and some constant AeR. Passing
to limits in the viscosity sense in (2.9)6, we deduce that the pair (v, A) solves
(2.8).

2. Uniqueness of A follows from the comparison theorem for viscosity
solutions. Indeed, suppose (0, X) solves

(H(Dyv+p,u,x,y) = i inUn,

Iv y-periodic, { A^

and, say, X > A. Adding a constant to v if necessary, we may suppose as well that

v>v inU". (2.16)

But for e > 0 small enough,

ev + H(Dyv + p,u,x,y)^ev + H(Dyv +p,u,x,y) inU"

in the viscosity sense; whence

v^v in W,

a contradiction to (2.16). •

To display explicitly the dependence of Aon/?, u and x, let us hereafter write

X = H(p,u,x) (peU",ueU,xeQ), (2.17)

denning thereby the effective Hamiltonian H. Thus the cell problem (2.8) reads

(H(Dyv+p,u,x,y) = H(p,u,x) in W,
y

\v Y-periodic.

Following [15], we record next various properties of H inherited from H.

LEMMA 2.2. (a) lim H(p, u, x) = +<», uniformly on B(0, L) x Q for each
L > 0 .

(b) The mapping u >—»H(p, u, x) — [iu is nondecreasing for each p, x.
(c) H is Lipschitz continuous on 5(0, L) xB(0,L)xQ for each L > 0.
(d) If H is convex in p, so is H.

Various additional properties of H may be found in [15].

Proof. 1. Fix M>0. Evaluating (2.9)6 at a point yoe Y where w6 attains its
maximum, we discover

dwd(y0)

Thus hypothesis (2.3) ensures

provided \p\ is large enough. Letting d tend to zero and recalling (2.14), (2.17),
we find that

H(p, u,x)^M

if |/?| is sufficiently large. This verifies assertion (a).
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Periodic homogenisation of partial differential equations 249

2. Suppose u i£ u, d>0, w6 solves (2.9)6 and w& solves

dwd + H(Dyw
d+p,u,x,y) = O inU". (2.19)a

In view of hypothesis (2.4) and standard comparison principles for viscosity
solutions, we find

-8wd^-6w6 + fi(u-u) inU";

and so, upon sending 6 to zero, we deduce

H(p, u, x) s= H(p, u, x) + fi(u - u).

Assertion (b) is proved.
3. Choose/?, p eW, u, u e U, x, x e Q, with \p\, \p\, \u\, \u\ « L . Let w* solve

(2.9)a and ws solve

p, u, x, y) = 0 in U". (2.20),,

Now in view of (2.5)

H(q +p, u, x, y)^H(q +p, u, x, y) + C(\p -p\ + \u - u\ + \x -x\)

for all q, y with \q\^L' and a constant C = C{L, L'). Thus

dwd + H(Dyw
d+p, u, x, y)^ -C(\p -p\ + \u - u\ + \x -x\) in IR"

in the viscosity sense. This PDE and (2.9)fi then imply

dwd - dw6 ̂  C(\p -p\ + \u - u\ + \x - x\) in W,

and so in the limit

H(p, u, x) - H(p, u, x) ^ C(\p -p\ + \u-u\ + \x-x\).

A similar argument implies as well that

H{p, u, Jc) - H(p, u, x) ̂  -C{\p -p\ + \u-u\ + \x-x\).

4. Assume now that H is convex in p. Fix p, q e IR", u e IR, x e Q, and let vp,
v9, v(p+q)l2 be Y-periodic viscosity solutions of the PDE

H{Dyv" +p, u, x, y) = H(p, u, x),
}q + a. u. x. v} = H(a. u. x\ in U"

(2.21)
H(Dyv" + q, u, x, y) = H(q, u, x) in IR",

1 2 ' ' " ) V 2

Subtracting a constant from v^p+t>'>n if needs be, we may assume

For later contradiction, let us suppose that

Y-, U, x^j > hH{p, u, x) + iH(q, u, x). (2.23)
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250 Lawrence C. Evans

We now claim

in R» (2.24)

in the viscosity sense. To see this, set

H

and write

We = r]*w,

r)e denoting the usual mollifier with support in the ball B(0, E). Then

, u, x,y)^\ f)e(y - z)//(z>yw(z) +^~, u, x, y] dz
I JB(y,E) V L I

= f r]e(y -z)H(Dyw(z) +^^-, u, x, z) dz + o(l)

r]e{y-z)H{Dyv»(z)+p,u,x,z)dz
Z JB(y,e)

+ \ f le(y - z)H(Dyv"(z) + q, u, x, z) dz + o(l)
1 JB(y,e)

= \H(p, u, x) + \H(q, u, x) + o(l)

as £—*0. The last equality is valid since the Lipschitz functions vp and vq solve
their PDE almost everywhere. Sending s to zero, we verify (2.24).

Utilising now (2.23), (2.24), we deduce

in

in contradiction to (2.22). •

We at last verify that the effective Hamiltonian H determines the limit PDE for
our rapidly oscillating problems (2.1)E.

THEOREM 2.3. Assume H verifies (2.2)-(2.5). Then u is the unique viscosity
solution of

(H(Du,u,x) = 0 in a,

l « = 0 ondQ. ( 2 - 2 i )

Proof. 1. Fix 4> € C°°{Q.) and suppose first that u — <p has a strict local
maximum at a point x0 e Q, with

«(*„) = <p(x0). (2.26)

We must show that

H(D<t>(xo),<l>(xo),xo)^0. (2.27)
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Periodic homogenisation of partial differential equations 251

Let us thus for later contradiction assume to the contrary that

H(Dcj)(x0), 4>(x0), xo) = 6> 0. (2.28)

Now set p = D(f)(xo), u = (j>(x0), x = x0 in (2.18) and choose v e C0A(U") to be a
viscosity solution of

fH(Dyv + D<{>(x0), 4>(x0), x0, y) = H(D<t>(x0), 0(xo), x0) = 0 in U",

I v y-periodic.

Define then the perturbed test function

(^ (xeQ).

Notice that <pc is Lipschitz continuous, but is not C1 in general.
2. We now claim that

x U 5 ( 4 ^ ^ ^ mB(xo,r) (2.30),

in the viscosity sense, for some sufficiently small radius r > 0 to be selected below.
(Here B(x(), r) denotes the open ball with centre xQ, radius r.) To see this, choose
any ip e C°°(W) and suppose (pe - ty has a minimum at a point x^ e B(x0, r), with

(2.31)

Then the mapping

has a minimum at x-y, and so

y>->v(y)-ri(y)

has a minimum at y{ =xje, for

(2.32)

Since K is a viscosity solution of (2.29), we deduce

H(Dr,(y,) + D(P(x0), <f>(x0), x0, yi) ^ 6.

Therefore (2.32) gives

( I ) + D<p(x0) - D<t>{Xl), 4>{x0), Xo, ̂ j ̂  e.

Consequently

if r > 0 is small enough. We have verified (2.30)e.
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252 Lawrence C. Evans

3. In view of (2.1)e, (2.30)e, and standard comparison results, we conclude

Now send e —» 0 to find

max
3B(xo,r)

^ max ( u -
3B(xo,r)

a contradiction to the assertion that u — (j> has a strict local maximum at x0. Thus
(2.28) is untenable and so (2.27) is proved.

4. The opposite inequality similarly obtains should u — <f> have a strict local
minimum at a point x0 e Q. Consequently u is a (and, by uniqueness, the)
viscosity solution, of (2.25). •

3. Second-order elliptic equations

We next study periodic homogenisation for fully nonlinear elliptic PDE having
the form

\F[D2us, Due, ue, x, - 1 = 0 ir

\ue = 0 on dQ,

where

is a given smooth function, 5"x" denoting the space of real, symmetric n x n
matrices. We suppose

the mapping y <-+F(R, p, u, x, y) is F-periodic (3.2)

for all R, p, u, x, and make the additional uniform ellipticity assumption

there exists a constant 6 such that

for all R, p, u, x, y. Let us hypothesise as well

u >-> F(R, p, u, x, y) — [iu is nondecreasing (3.4)

for some /J. > 0 and all R, p, x, y,

F is Lipschitz on Sn*n x R " x R x Q x H " . (3.5)

Assume now for each e >0 that MEeC(Q) is a viscosity solution of (3.1)E.
Owing to (3.3) and estimates of Krylov and Safonov, extended to viscosity
solutions of elliptic PDE by Trudinger [18] and Caffarelli [5], there exists y > 0
for which

SUp ||Me||c"y(Q)<00- (3.6)
O<E<1
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Periodic homogenisation of partial differential equations 253

As a consequence we may extract a subsequence {«e'}"=1 c {ue}E>0 and a
function u e COy(Q) with

Me>—»u uniformly on Q. (3.7)

As before, we wish to ascertain a nonlinear elliptic PDE which u solves in the
viscosity sense.

LEMMA 3.1. For each fixed R e Snx", p e W, u eU and x e Q there exists a
unique real number A for which the PDE

2
yv + R,p,u,x,y) = X in Un

\v Y-periodic

has a viscosity solution v e CltY(U"), for some y > 0.

Proof. We mimic the proof of Lemma 2.1 by considering for <5>0 the
approximating problem

6wa + F(D2
yw

 6 + R,p,u,x,y) = 0 inU". (3.9)a

This PDE has a unique bounded viscosity solution wa (see, for instance, [10,19]),
which, owing to the uniqueness and hypothesis (3.2), is y-periodic. Additionally

sup \\dW
6\\L-m^\\F(R,p,u,x,-)\\L~m<«>. (3.10)

0<<5<l

In addition, the Krylov-Safonov estimates assert

SUp ||*fa||co.r(y)<» (3.11)
0<5<l

for some y > 0.
We now proceed as in the proof of Lemma 2.1. The C l r regularity follows

from Trudinger [19]. •

We write
X = F{R,p,u,x) (3.12)

to exhibit explicitly the dependence of A on R, p, u, x. Then (3.8) reads

(F(D2
yv+R,p,u,x,y) = F(R,p,u,x) in W,

\v y-periodic.

LEMMA 3.2. (a) F is uniformly elliptic in the sense that

F(R+S,p,u,x) + 9tr(S)^F(R,p,u,x) ifS^O (3.14)

for all R, p, u, x.
(b) The mapping u •-> F(R, p, u, x) — JXU is nondecreasing for all R, p, x.
(c) F is Lipschitz on 5"x" x Un x U x Q.
(d) If F is convex in R, so is F.

Proof. 1. Assume 5 = 0, and let vR, vR+s be y-periodic viscosity solutions of

(F(Dyv
R+R,p,u,x,y) = F(R>P,u,x)

[F(D2
yv

R+s + R + S,p,u, x, y) = F(R + S, p, u, x) K }
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254 Lawrence C. Evans

We may as well suppose additionally

Assume then for later contradiction that

F(R + S, p , u, x) > F(R, p , u,x)-d tr (5 ) . (3.17)

We now claim that

F(D2
yv

R+s + R, p, u, x, y)^F(R,p, u, x) in W (3.18)

in the viscosity sense. To see this, let <f> e C°°(U") and suppose vR+s — <p has a
local minimum at a point yoeU". In view of (3.15) we have

F(D2<j>(y0) + R + S,p,u, x, y0) ^ F(R + S, p, u, x).

Consequently (3.3) yields

F(D2<p(y0) + R, p, u, x, y0) ^ F(D2(f>{yQ) + R+S,p,u, x0) + 6 tr (5)

^ F(R + S, p, u, x) + 6 tr (S)

>F(R,p,u,x) by (3.17).

This establishes (3.18).
Owing now to (3.15), (3.18) and comparison theorems for viscosity solutions,

we discover

a contradiction to (3.16). This verifies assertion (a).
2. The proofs of assertions (b) and (c) are similar to the corresponding proofs

for Lemma 2.2. When F is convex in R, any viscosity solution of (3.13) is in
CM(R") (and in fact C2r(R") for some y > 0). The proof of (d) then follows as in
Lemma 2.2. •

THEOREM 3.3. Assume F verifies (3.2)-(3.5). Then u is the unique viscosity
solution of

(F(D2u,Du,u,x) = 0 in Si,

I i i = 0 on da. ( '

Proof. 1. The proof is similar to that for Theorem 2.3. Fix (j> e C°°(Q) and
suppose u — <p has a strict local maximum at x0 e Q, with

u(x0) = <K*o)- (3.20)

We intend to prove

F{D24>{xa), D0(*o), Hxo), x0) ^ 0, (3.21)

and consequently suppose to the contrary that

F(D2tf>(x0), D<p{x0), 4>(x0), xo)=9>0. (3.22)

Set R = D2cj)(x0), p = D<p(x0), u = (p{x0), x = x0 in (3.13) and choose v to be a
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Periodic homogenisation of partial differential equations 255

viscosity solution of the cell problem
2v + D24>(x0), D4>{xQ), 0 (* o ) , x 0 , y)

= F(D2(j)(xn), D(j)(x0), <p(x0), x0) = 9 in R", (3.23)

v F-periodic.

Define now the perturbed test function

(X € Q).

Note that <pe is C ' r , but is not C2 in general.
2. We claim that if e > 0 is small enough, then

x), <p\x), *>-^\ i n B(xo> r) (3.24),

in the viscosity sense, for some sufficiently small r > 0.

Select ^ £ C™(IR") and suppose <pE — i/> has a minimum at a point xx e B(J:0> 0»
with

(3.25)

Then the mapping

has a minimum si yx = xjE, for

In as much as v is a viscosity solution of (3.23), we deduce

F(D2ri(yi) + D2cf>(x0), D<t>(x0), <t>(x0), x0, yi) ^ 6.

Thus

( ), D<t>(x0), <Kx0), x0, ^ ) ^

whence

F(p2xi,{x,), D<Kx0), V(*i), *i, ^ ) ^

if r > 0 is small enough. In addition, since v e C l y , we can compute

Hence

). *I» 7 ) = 2

if r, e > 0 are small enough. This inequality verifies the claim (3.24)E.
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256 Lawrence C. Evans

3. Owing now to (3.1)E, (3.25)e and the comparison theorem for viscosity
solutions of fully nonlinear elliptic PDE (cf. [13,10, 12]), we have

Sending e —» 0, we discover that

^ max (ue-<t>e).
3B(xn,r)

= max (« — <p),
3B(xo,r)

a contradiction since u - <p has a strict local maximum at x0. This confirms (3.21).
4. The opposite inequality holds similarly, provided u — <p has a strict local

minimum at a point xoeQ. O

4. Convergence of second-order to first-order equations

As our next general class of problems, let us investigate the PDE

F(eD2ue, DuE, uE, x, -) = 0 in Q,
\ El

= 0 on dQ,

for
p . o n Xn y |T~p /i »> rrj) v . r-v y rr-p n . rrp

as above. The new effects concern the interplay between the "vanishing viscosity"
term eD2ue and the high frequency, periodic oscillation term x/e. We shall
assume as usual that

the mapping y>-*F(R, p, u, x, y) is Y-periodic (4.2)

for all R, p, u, x. Additionally, we make the uniform ellipticity assumption (3.3).
We suppose as well that

lim F(0, p,u,x,y) = +<x> uniformly on B(0, L) X Q X W for each L > 0 (4.3)
IP !-«••»

, p, u, x, y) — fiu is nondecreasing (4.4)

for some ju > 0 and all R, p, x, y. Finally, we require

F is Lipschitz on SnXn x R " x R x Q x R " . (4.5)

Now, in the light of hypotheses (3.3) and (4.4), we have the estimate

sup | |Me| |^Q )^- | |F(0,0,0,-,-)IL-(uxY)«». (4-6)
0<£<l fl

In view of the e in front of the second derivatives in (4.1)E, we do not have
available Holder estimates as in Section 3. Our plan, as before, is to show that
the ue converge uniformly to a viscosity solution u of an effective limit PDE. The
new complication is that we cannot at once legitimately deduce uniform
convergence of any subsequence from the crude bound (4.6). We instead utilise
the techniques of Ishii [11] and Barles and Perthame [1].
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LEMMA 4.1. For each fixed p e R", u eU and x e Q, there exists a unique real
number A for which the PDE

(F(D2
yv,Dyv+p,u,x,y) = X in W,

Iv y-periodic,

has a viscosity solution v e C1>V(IR") for some y > 0.

Proof. The proof is similar to that for Lemma 3.1. For each 6 > 0 we solve

dwd + F(D2wd, Dyw
8 + p, u, x, y) = 0 in Un (4.8)fi

and then show

I W
6 ~^ uniformly on U" (4.9)

for

-*. •
Y

We display the dependence of A on p, u, x by writing

X = F{p,u,x). (4.10)

Equation (4.7) thus becomes

(F(D2
yv, Dyv +p, u, x, y) = F(p, u, x) in U",

\v y-periodic.

LEMMA 4.2. (a) lim F(p, u, x) = +°°, uniformly on B(0, L ) x Q for each
L>0. lp^°°

(b) The mapping u >-> F(p, u, x) — fiu is nondecreasing for all p, x.
(c) Fis Lipschitz on WxRxQ.
(d) / / F is convex in R and p, F is convex in p.

Proof. 1. Fix M >0. We consider (4.8)g and evaluate at a point y 0 e 7 where
w6 attains its maximum. Thus

Hypothesis (4.3) now implies

provided \p\ is large enough. Assertion (a) then follows from (4.9), (4.10).
2. Assertions (b)-(d) are proved as in Lemmas 2.2, 3.2. •

LEMMA 4.3. There exists a unique viscosity solution u e C01(Q) of

(F(Du,u,x) = 0 in Q,
U = 0 on dQ. K ' '

Proof. This is a consequence of conditions (a)-(c) in Lemma 4.2. •
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258 Lawrence C. Evans

THEOREM 4.4. Suppose Fsatisfies (3.3), (4.2)-(4.5). Then

ue—>u uniformly on Q,

where u is the unique viscosity solution of (4.12).

Proof. 1. Set

M*(x) = lim sup Mf(z) (x e Q)

u^(x) = \iminfuc(z) (xeCl).

Z—>X

Then u* is upper semicontinuous, M* is lower semicontinuous,

u*^u* in Q. (4.13)

Our intention is ultimately to show

u* = u* = u, (4.14)

u the (unique) viscosity solution of (4.12).
2. We first assert that

F(Du*,u*,x)^0 inQ (4.15)

in the viscosity sense. To prove this, select <j> e C°°(IR") and suppose u* - cp has a
strict local maximum at x0 e Q, with

u*(x0) = 0(xo). (4.16)
We wish to show that

F(D<p(x0), <H*o),*o)^0 (4.17)

and consequently assume to the contrary that

F(D<f>(x0), <t>(x0), xo) = 6> 0. (4.18)

Set p = D0(JCO), « = 0(*o), * =*o in (4.11).
Let u b e a viscosity solution of (4.11), and define the perturbed test function

(xeQ).

3. We claim that if e > 0 is small enough, then

),x,-^^ in B(x0, r) (4.19)

in the viscosity sense, for some sufficiently small r > 0. To see this, fix ip e
and suppose \pE — \p has a minimum at a point jct e fi(x0, r), with

Then
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Periodic homogenisation of partial differential equations 259

has a minimum at yx = xje, for

r)(y)^-£(xi>(ey)-4>(ey)) (yeW).

Since v is a viscosity solution of (4.11), we have

F{D2r)(yx), Dr,(yi) + D<p(x0), <j>(x0), x0, yx) ^ d.

Hence

iD2\j){xx) - eD2cj)(x1), D%p(xx) + D(p(x0) - Dcpix^), <t>{xa), x0,
 zz) = d;

and so

F( eD2%p(x1), Dip(xx), ty(xx), xlt — ) ^ ^ -

provided E, r>0 are small enough. This verifies (4.19).
4. Since ue solves (4.1)e, we deduce

max (ue — <̂>) = max (ue — <j>e),

B(xo,r) 3B(xo,r)

whence we arrive after sending £ -» 0 at the contradiction

^ max (u*-(j>).

3B(xo,r)

5. We next assert

M * = 0 on 3Q. (4.20)

Indeed, by definition and (4.1)e, we see

u * ^ 0 on 3Q. (4.21)
To establish the opposite inequality, fix any point x0 e dQ and choose a smooth
function v such that

v(x0) = 0, v > 0 in Q - {xQ}, Du#0onQ. (4.22)
Fix a > 0 so large that

F(O,<XDV,O,X,-)^1 (4.23)
\ el

for each x eQ, 0 < e < 1; this is possible owing to (4.3), (4.22). Then

F[eaD2v, aDv, ocv, x, - ) ^ F\ eaD2v, aDv, 0, x, - ) by (4.4), (4.22)
\ el \ el

^\ on Q. by (4.23),

provided e >0 is small enough. By comparison therefore

uE^ av on Q.
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260 Lawrence C. Evans

Consequently

M* Si av on Q,

and thus

«*(*<,) Si 0.

As this inequality is valid for each point ;c0 e dQ, we deduce

«*^0 on dQ.

This and (4.21) establish (4.20).
6. Using now (4.15), (4.20), we deduce

w*Siu in Q, (4.24)

u the unique viscosity solution of (4.12). An analogous argument reveals

u SSM* in Q.

This estimate, (4.24), and (4.13) lead us at last to (4.14). •

5. Some examples and variants

It remains a fascinating and still largely open problem to discover explicit
formulae for the effective nonlinearities H and F as above. The following are
some partial results in this direction. See also Lions, Papanicolaou and Varadhan
[14].

1. A quadratic Hamiltonian. Consider the problem

F(eD2uE, DUE, ue, x, -) = (iue - £aJ-)ue
XiX. + aJ-)ue

xux. - / = 0 in Q,

lw£ = 0 on3Q,

where the smooth symmetric coefficients {a,y}";=1 satisfy

y >-> atj{y) is Y-periodic (1 ^ i, j Si n) (5.2)

and
f there exists 6 > 0 such that
l0|§|2Sfl(/OO§,§y ( | 6R") ( }

for all y e W. (This example does not verify hypothesis (4.5) because of the
quadratic growth in the gradient, but this fact does not affect the following
explicit analysis.) According to Section 4, the corresponding cell problem is

jjuw -aij(y)vy.y. + aij(y)(vy. + pt){vy. +/?,) -f(x) = A in Y,
\v y-periodic.

Assume temporarily v to be a smooth solution of (5.4) and set

w = e~v. (5.5)
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Periodic homogenisation of partial differential equations 261

Then w solves the linear eigenvalue problem

))w i n R ,
lw y-periodic

for

Ww = -aij(y)wy.y. + 2aij(y)piWy. - a^p^jW. (5.7)

As w>0, we see from (5.6) and the Krein-Rutman Theorem that fiu — (A +
/(*)) is the principle eigenvalue A°(p) of the operator IT (with periodic boundary
conditions on Y). Hence

Thus as in Section 4

ue—>u uniformly on Q,

u the unique viscosity solution of

(liu-k°(Du)=f inQ,
l« = 0 on 3Q.

Consider next the first order PDE

H ( D U \ ue, x,-) = fiue + aJ-)ue
xu

e
x - f = 0 in Q

\ El \EI ' '

the coefficients {a,y}"/=i verifying (5.2), (5.3). According to Section 2, the cell
problem is

f JIM + a^y)(vyi +pd(vy,+Pj) -f{x) = A in U",
\v y-periodic.

To solve this, let us fix 6 > 0 and study the approximating problem

u - S2
aiJ(y)v6

yiy. + a i y * « ^
y-periodic. ( 5 - 1 0 ) 6

Setting

we transform (5.10)fi into the linear eigenvalue problem

w& v :«J:« (5.H)«

Since w 6 >0, we deduce as above that [/iu — (Aa +f(x))]/62 is the principle
eigenvalue k°(p/d) of the operator Lp'6. Therefore

f(x) (5>0). (5.12)
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262 Lawrence C. Evans

It is easy to verify using (5.3) that

for appropriate constants A, B, a, b> 0. Thus for fixed p, u, x

sup |Aa|<<».

In consequence we deduce from (5.10)6 the bounds

sup ||US||C".'(R»)<00

0<6<l

provided we add as necessary a constant to vs to ensure

Choose then a subsequence {(vd>, Aa')}°°=1 a {(v6, Ad)}a>0,

uniformly on U".

It follows that v and A solve (5.9) in the viscosity sense. In view of the uniqueness
of A (Lemma 2.1) we deduce that in fact

lim A6 = A.

Thus the full limit

s 1™. d 2 j L°( |) ( 5 1 3 )

exists for each p e IR". We verify also that A* is concave and homogeneous of
degree two. Finally we see that the Hamiltonian is

H(p,x) = -k*(p)-f(x).

Theorem 2.3 now asserts that

ue-*u uniformly on Q,

u the unique viscosity solution of

(fiu-k*(Du)=f in Q,
IM = 0 on 3Q.

I do not know any explicit characterisation of the function A*(-) beyond the
representation formula (5.13).

2. A scalar conservation law with periodic forcing. As a rather different
example, we consider next a scalar conservation law driven by a large amplitude,
rapidly oscillating, time-periodic forcing term of mean zero. The relevant PDE is

u:+G(u%=-f(x,-^j in Rx (0,°o),

.«• = * onRxVo). (5"15)f
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Periodic homogenisation of partial differential equations 263

We assume g e L\W) n L°°(U") and also that the smooth function G satisfies

lim G(u) = <*>. (5.16)

We additionally assume / is smooth with

s •"-»/(*, s) is 1-periodic (x e U), (5.17)

I f(x,s)ds = 0 (xeU). (5.18)
•>o

We inquire, as usual, as to the limit of uE as e—»0. For this, set

F(x, s) = I f(x, t) dt (x.seU),

so that
s i-> F(x, s) is 1-periodic

and
F(x, 0) = F(x, 1) = 0 (xeR) .

Consider the Hamilton-Jacobi PDE

{ wf + H(wE,x,-)=0 inRx(0,»),
V el \ > >> (5.19)£

where

h(x) = j g(y)dy (xeU)

and
H(p, x, s) = G(p + F(x, s)) (p,x,seU). (5.20)

Owing to (5.16), for each e > 0 the PDE (5.19)e possesses a unique viscosity
solution wE, with the estimates

sup \\we, wl, wf||i.«(Rx(0,»))<oo.
O<£<1

As wEis Lipschitz,
/ t\

(5.21)

exists for almost every (x, t). In addition, uE so defined is the unique entropy
solution of (5.15)e.

Pass to a subsequence {we'}J=1 c {we}e>0 with

we>^>w locally uniformly in U x [0, oo) (5.22)

for weC0'1^ x[0, <»)). To find the effective PDE which w solves, let us
introduce as in Sections 2-4 an appropriate cell problem, which is, for the case at
hand,

v, + H(Dyv+p,x,s) = \ inRx[0,»),

v 1-periodic in s,
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264 Lawrence C. Evans

for p, x, y e R. We solve (5.23) by seeking a solution v(s) which does not depend
on y. Thus (5.23) becomes the ODE

vs + H(p,x,s) = X inR,
1> 1-periodic in s.

Setting

u(0) = 0,

we compute

v(l) = j us(s) <fc = A - I H(p, x, s) ds = 0,
Jo Jo

provided

A = H(p, x)=\ G(p + F(x, s)) ds (p, x e R").
Jo

As in Section 2, we can show that w is the unique viscosity solution of

(w, + H(wx,x) = 0 inRx[0,co),

\w = h o n i x { ( = 0}. P '

Now according to (5.21), (5.22),

u %x, t) -*» VV,(A:, i) + F(x) = M

weakly-star in L°°(IR x [0, °°)), for

- 1 F(x, s) ds = I (£/(*, 0 dr) ds.

In view of (5.25),

is the unique entropy solution of the conservation law

(ut + H(u,x)x = 0 inRx[0,oo)
« = g on R x [0, oo).

Hence u is the unique entropy solution of

(ut + G(u, x)x = 0 inRx[0,oo)

u=g on R x [0, oo),

where

G(u, x) = H{u - F(x), x)=f G(u + F(x, s) - F(x)) ds (u,xe
Jo

and

Notice in this example that the initial conditions change in the limit.
See [8] for homogenisation of a conservation law with a rapidly oscillating

space-periodic forcing term.
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